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Summary

A recurrent selection program for adaptation to diverse environments was successful in improving mean oat (Avena
sativa L.) grain yield within and across testing environments. The objectives of this research were to determine if
this selection program also resulted in changes in other agronomic traits or altered yield stability. Additionally,
we investigated how selection modified the response of genotypes to climatic conditions. We evaluated random
samples of 100 families from the original population and each of three selection cycle populations in replicated
yield trials in Idaho, Iowa, and Norway for two years. Yield stability was assessed via joint regression analysis and
superiority analysis. For each cycle, genetic relationships among yields observed in different environments were
assessed by estimating phenotypic correlations between pairs of target environments. The effect of climate variables
on genotype-by-environment interaction (GEI) responses was determined with partial least squares regression.
Selection resulted in a small increase in mean heading date, a decrease in mean test weight, and no change in total
above-ground biomass or plant height. Genotypic regression coefficients on environmental indices and deviations
from regression were larger in the last cycle population, but superiority analysis demonstrated that selection sig-
nificantly improved the adaptability of the population to the target testing environments. Improved adaptation was
also demonstrated by increased phenotypic correlations among the most divergent pairs of environments in the
later cycles. Partial least squares regression of GEI effects on climate variables suggested that later cycle families
tended to respond more favorably to cooler than average conditions than the original population. Selection resulted
in improved yield stability as well as improved mean yield.

Abbreviations: AMMI – additive main effects and multiplicative interactions; GEI – genotype-by-environment
interaction

Introduction

Oat grain yield is strongly influenced by environ-
mental conditions, with the result that oat yields often
fluctuate greatly from year to year. Improving the dy-
namic stability (as defined by Becker & Leon, 1988) of
oat yields in target production environments is an im-
portant breeding objective. Unfortunately, a tradeoff
between mean productivity and stability often exists.
Selection on the basis of yield stability frequently is

predicted to result in lower mean yields (Finlay &
Wilkinson, 1963; Helms, 1993). Conversely, selection
for greater mean yield may result in lower stability
(Simmonds, 1991).

Holland et al. (2000) reported that recurrent selec-
tion for broad adaptation to diverse environments in
oat resulted in significant increases in mean population
grain yield both within and across environments. In
addition, the mean genetic correlation among yields
in different environments increased, suggesting that
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yield stability across environments also increased in
later cycles of selection. A better understanding of
the changes in stability or adaptability due to selec-
tion in the oat population described by Holland et al.
(2000) would be achieved through the comparison of
selection cycles based on a variety of stability meas-
urements and by estimating the correlated responses
to selection in variables that may affect adaptability.
Whereas many previous studies have investigated sta-
bility of selected cultivars or lines representing one
stage of a breeding program, the experiment described
in Holland et al. (2000) represents an opportunity to
investigate the changes in mean genotypic perform-
ance and genotype-by-environment interaction effects
among different cycles of a breeding program de-
signed to improve adaptability across diverse environ-
ments.

Stability parameters of interest include the
Eberhart-Russell regression coefficient (bi) and Lin &
Binns’ superiority parameter (Pi ). Eberhart & Rusell’s
(1966) parameter is based on the regression of each
line’s yield on the environmental index (the mean yield
at each environment). According to Eberhart & Rusell
(1966), a stable line has unity regression coefficient,
minimum deviation from regression, and high mean
yield. Lin & Binns’ (1988) superiority parameter (Pi)
is the squared difference between the line’s yield and
the maximum yield within each environment, aver-
aged over all environments. Genotypes with broader
adaptation have lower values of this superiority para-
meter, because they yield closer to the maximum yield
within each environment, relative to genotypes with
poorer adaptation to the target set of environments.

Holland et al. (2000) reported that the mean ge-
netic correlation among environments increased due
to selection for broad adaptation in their oat pop-
ulation. This indicated that genotypic responses to
different test environments were more predictable in
later cycles. Cooper and DeLacy (1994) suggested
that, when genotype by environment interaction is im-
portant, the individual correlations between pairs of
test environments that compose the mean correlation
among all test environments is of interest. Phenotypic
correlations between pairs of environments indicate
the nature and magnitude of indirect responses if se-
lection is conducted in one environment and evaluated
in a second environment (Cooper & DeLacy, 1994).
Furthermore, some pairs of environments may be neg-
atively correlated, but such cases will not be revealed
unless the individual environment pair correlations
are estimated, because the mean genotypic correlation

among environments is expected to be greater than or
equal to zero.

An alternative, and complementary, method
of evaluating relationships among environments
is through multivariate analysis of genotype-by-
environment interactions (Crossa, 1990; Lin et al.,
1986). Additive main effects and multiplicative in-
teractions (AMMI) analysis has been used to parti-
tion the genotype-by-environment interaction (GEI)
effects (remaining after accounting for environment
and genotype main effects from multi-environment
yield trial data) with a principal components analysis
(Crossa, 1990; Gauch, 1992). Differences in stability
and adaptability among genotypes are then evaluated
qualitatively based on graphical displays. In addi-
tion, relationships among testing environments can be
revealed by plotting the environments according to
their principal component scores from the AMMI ana-
lysis. We propose to investigate the nature of changes
in genotypic responses to test environments brought
about by selection by first employing this descriptive
method of grouping environments according to sim-
ilar GEI responses. These descriptive relationships can
then guide interpretation of the observed phenotypic
correlations between pairs of environments.

Finally, the influence of climate variables on GEI
effects in the different cycles of selection can be com-
pared to determine if selection has altered the mean
genotypic response to specific climate variables. This
comparison can be made by regressing the GEI ef-
fects on climate variables measured in each environ-
ment using partial least squares regression (Aastveit
& Martens, 1986; Vargas et al., 1998). Partial least
squares regression relates one or more factors that
represent much of the variation in the causal climate
variables to factors that explain much of the GEI
variance (similar to the principal components of the
AMMI analysis). Differences among cycles’ interac-
tions with environments then can be related to their
reactions to climate variables estimated using partial
least squares regression.

The objectives of this research were to determ-
ine if selection for greater grain yield in divergent
environments resulted in changes in means of other
agronomically important traits, yield stability (meas-
ured using regression on environmental indices and
superiority statistics), correlations among pairs of en-
vironments, or interactions between genotypes and
specific climate variables.
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Materials and methods

Population development and recurrent selection

Population development and selection procedures
were described in detail by Holland et al. (2000).
Briefly, a broad-based population was developed from
crosses among 20 oat cultivars and experimental lines
from U.S.A., Canada, Norway, and Sweden. Full-sib
families in the S1 generation were developed from
the base (C0) population and tested in replicated hill
plot trials in three Iowa locations (near Ames, near
Kanawha, and near Nashua), Aberdeen, ID; and Kapp,
Norway. Families that yielded well in all environments
were selected and intermated at random to form a new
population (C1). Full-sib families in the S1 generation
were also developed from the C1 population and eval-
uated in the same way as the C0 population. Selection
and intermating were repeated for three cycles of se-
lection. Details of the selection method varied slightly
among cycles, but a positive selection differential was
maintained within each site for each cycle (Holland et
al., 2000). Population sizes ranged from 190 to 250
full-sib families each cycle. Percentages of population
selected ranged from 16% to 26% each cycle. The
Norwegian testing site was changed to Ås, Norway for
C2 and later evaluations.

Evaluation experiment

Details of the evaluation experiment were given by
Holland et al. (2000). To summarize, random samples
of 210 full-sib families from C3, 100 full-sib fam-
ilies from each other cycle population (C0-C2), and
the 20 original parental lines were selected for testing.
Entries from C0-C3 were randomly assigned to four
sets, such that each set contained all 20 original par-
ents; 25 full-sib families from C0, C1, and C2; and 52
or 53 full-sib families from C3. Some parental lines
were duplicated in sets to make 156 entries per set.
A sets within replications design was used, and the
entries within sets were arranged in 12 x 13 triple lat-
tices at each location (Ås, Aberdeen, Ames, Kanawha,
and Nashua). In 1996, the same entries were used, ex-
cept that only 100 randomly-chosen C3 families were
included, plus one C3 family, IA94366, that was se-
lected as a check line based on its outstanding yield
performance in 1995, and there were 132 entries per
set. A sets within replications design was used, and
the entries were arranged in 11 × 12 triple lattices at
each of the same five locations.

Grain yields were measured on every plot in each
environment and adjusted for percentage of hulless
grain as described by Holland et al. (2000). Heading
dates and plant heights were measured on every plot
at Ås, Aberdeen, and Ames. Above-ground biomass
was measured on every plot at Ås (1995 only) and
Ames, Kanawha, and Nashua. Grain test weight was
measured on samples of grain bulked over replications
for each entry in each environment.

Statistical analyses

Each set within each environment was analyzed sep-
arately, and entry means adjusted for lattice block
effects were obtained using SAS Proc MIXED (SAS
Institute Inc., 1999). Means across the three Iowa loc-
ations within each year were computed to estimate
an Iowa mean for each set. Means over years were
computed for Ås, Aberdeen, and Iowa locations, in-
cluding for C3 only those families tested in both years.
Means over years and locations (considering the Iowa
mean from each year as a single-location mean) were
computed for each set. Finally, the cycle population
means and the regression coefficient of population
mean yields on number of cycles of selection were es-
timated from a combined analysis over environments
and sets.

Joint regression analysis

Environmental index values were calculated as the
mean yield across all genotypes within each envir-
onment. The combined ANOVA across environments
was performed considering the environmental index as
a single degree of freedom linear regressor (Eberhart
& Russell, 1966). The GEI variance was partitioned
into a component due to differences in the regression
of genotype yields on environmental index and a com-
ponent due to deviations from regression. The regres-
sion of yield on environmental index was performed
separately for each genotype to estimate their regres-
sion coefficients (bi). One-way analyses of variance
were performed to determine if cycles differed signi-
ficantly for mean regression coefficients. Confidence
intervals for the coefficient of correlation between bi

and mean yield were estimating following Steel &
Torrie (1980).

AMMI analysis

Within each environment, yields of each experimental
family and check line (‘genotypes’) were adjusted for
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set effects. The residual sums of squares due to check
lines repeated within and across sets from each en-
vironment were summed and divided by the summed
degrees of freedom for residuals to obtain a pooled
estimate of residual error variance. The main effects
of genotypes and environments were obtained from
a combined analysis of variance across environments
using SAS Proc GLM (SAS Institute Inc., 1999). The
residuals from this analysis were then treated as a mul-
tivariate data set: for each genotype, the GEI residuals
from the ten different environments were treated as ten
variables measured on the same genotype. Principal
components analysis was implemented with SAS Proc
PRINCOMP (SAS Institute Inc., 1999) to obtain the
eigenvalues and eigenvectors of this GEI residual mat-
rix. To choose the number of principal components to
use for the AMMI model, we followed Gauch (1992)
in using the minimum number of principal compon-
ents necessary to account for the ‘pattern’, as opposed
to ‘noise’, in the GEI variance. The amount of noise in
the GEI sum of squares was estimated by multiplying
the error mean square by the degrees of freedom for
GEI. Scores from the principal components used in the
AMMI analysis were calculated for each environment.

Superiority analysis

At each location, the maximum mean yield among
all genotypes was noted. Then for each genotype, the
mean square difference between its yield and the max-
imum yield at that environment was calculated. This
was repeated for each environment (where different
genotypes may represent the maximum in different en-
vironments) and the mean square difference between
the genotype and the maxima was averaged over envir-
onments to compute the superiority index (Pi) (Lin &
Binns, 1988). Superiority indices were computed for
four different measures of within-location mean yields
of each genotype: 1) traditional ANOVA mean, 2)
traditional ANOVA mean standardized by subtracting
the environment mean and dividing by the stand-
ard deviation of genotype means in that environment,
3) AMMI predicted mean (based on first two prin-
cipal component scores of the AMMI analysis), and
4) AMMI predicted mean standardized in the same
manner as in 2. One-way analyses of variance were
performed to determine if cycles differed significantly
for mean superiority indices.

Correlations between pairs of environments

Phenotypic correlations between mean yields of lines
within each cycle in each pair of environments were
estimated using SAS Proc CORR (SAS Institute Inc.,
1999). Genotypic correlations between environments
i and j were estimated as rgij = rpij /hihj , where
rpij is the phenotypic correlation between the envir-
onments and hi and hj are the square roots of the line
mean heritabilities within each environment (Cooper
& DeLacy, 1994).

Partial least squares regression of
genotype-by-environment residuals on climate
variables

The following climate variables were measured in
each testing environment: maximum daily temperat-
ure, minimum daily temperature, and daylength. The
growing season within each environment was divided
into two periods, before and after the mean heading
date within the environment. Each of these periods
was then divided into two equal periods, resulting in
four time periods for each environment: period 1 rep-
resented the time from planting to halfway to the mean
heading date; period 2 represented the time from the
end of period 1 to the mean heading date; period 3
represented the time from the mean heading date until
halfway to the harvest date (complete maturity); and
period 4 represented the time from the end of period
3 to the harvest date. For each time period and en-
vironment, the average maximum and minimum daily
temperatures and the average daylength were calcu-
lated. Twelve climatic variables resulted: MaxT1,
MaxT2, MaxT3, and MaxT4, the average maximum
daily temperatures within time periods 1, 2, 3, and
4, respectively; MinT1, MinT2, MinT3, and MinT4,
the average minimum daily temperatures within time
periods 1, 2, 3, and 4, respectively; and Day1, Day2,
Day3, and Day4, the average daylengths within time
periods 1, 2, 3, and 4, respectively. Each climatic vari-
able was standardized by subtracting the mean across
environments and dividing by the standard deviation
of the variable.

Regression of the matrix of standardized genotype-
by-environment interaction effects on the matrix of
climate variables was performed using partial least
squares regression (Aastveit and Martens 1986; Var-
gas et al., 1998) in SAS Proc PLS (SAS Institute Inc.,
1999). The number of latent variables to extract was
chosen in the same manner as the number of principal
components in the principal components analysis. The
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Table 1. Means of agronomic traits of parent lines and each
selection cycle, averaged over all environments

Cycle Yield Test weight Heading date

g m−2 kg m−3 dap1

Parents 569 484 58.6

C0 573 477 57.5

C1 592 476 57.6

C2 603 468 56.9

C3 624 467 57.9

LSD (0.05) 28 7 0.4

b-value2 (year−1) 16∗∗∗ –4∗∗∗ 0.1∗

1 Days after planting.
2 Slope of the regression of population means on cycles
(years) of selection.

mean dependant variable weightings (Y-weightings)
for each extracted latent variable were computed for
each genotype. One-way analyses of variance of the
Y-weightings for each latent variable were performed
to compute the mean weightings for each cycle popu-
lation and to test the significance of differences among
cycle means.

Results and discussion

Direct and correlated mean responses

Mean grain yield averaged across environments in-
creased by 16 g m−2 per cycle of selection (Table 1).
Neither above-ground biomass nor plant height
changed significantly over cycles of selection. Head-
ing date averaged across environments increased sig-
nificantly, but by a mere 0.1 days per cycle (Table 1).
The heading date responses observed within locations
were not consistent, however. Whereas heading date
in C3 tended to be later than C0 in Idaho and Nor-
way, no differences among cycles were observed in
Iowa. An unfavorable correlated response was ob-
served for average test weight across environments.
Test weight decreased significantly by 4 kg m−3 per
cycle (Table 1), and this response was consistent
within all environments.

Genotype-by-environment interaction for grain yield

Holland et al. (2000) reported that genotype-by-
environment interactions for yield were significant in
this experiment. The GEI variance component was
greater than the genotypic variance component within

Table 2. Mean regression coefficients (bi ) and cor-
relations between regression coefficient and mean
yield (rb·yld ) (and their 95% confidence intervals) for
parent lines and each cycle of selection computed
from regression of individual genotype yields within
environments on mean environmental yields

Cycle bi rb·yld

Parents 0.93 0.66 (0.32, 0.85)

C0 0.96 0.66 (0.52, 0.76)

C1 1.00 0.80 (0.72, 0.86)

C2 1.01 0.84 (0.77, 0.89)

C3 1.04 0.83 (0.76, 0.88)

LSD1 (0.05)a 0.05

LSD2 (0.05)b 0.06

a LSD1 (0.05) is least significant difference appropri-
ate for comparisons among cycle means.
b LSD2 (0.05) is least significant difference appro-
priate for comparisons of cycle means and parental
mean.

each cycle, ranging from 1.7 (in cycle 2) to 2.5 times
(in cycle 0) greater.

Joint regression analysis

Differences among genotypes for linear regression
on environmental index accounted for 41% of the
genotype-by-environment interaction variance. Cycles
differed significantly for mean regression coefficient
(bi) (Table 2).

The regression coefficient increased significantly
by an average of 0.023 per cycle. Eberhart & Rusell
(1966) considered a stable genotype to be one with
a regression value of 1, high mean yield, and low
deviation from regression. The increase of regression
values with cycles of selections indicates that selec-
tion enhanced the potential for genotypes to respond
to more productive environments. Does this mean that
the later cycles of selection are less stable, in that they
are expected to perform worse in low productivity en-
vironments? In the target population of environments
for this population – which include Iowa, Norway, and
Idaho, this was not so; the later cycles of selection
outyielded the original population even in the lower-
productivity environments (Holland et al., 2000). The
result could be different if more stressful environments
were considered, but we have no data to address that
situation. In this case it simply means that the abso-
lute rate of yield increases was greater in the higher
productivity environments, as shown by Holland et
al. (2000). Holland et al. (2000) also found that the
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rate of increase as a proportion of the original popula-
tion mean within the same environment was actually
greater in the lowest productivity environment than
in the highest productivity environment, however. It
is important to stress that the low productivity en-
vironments in this experiment were represented by
Iowa, and may not be considered by others to be low
productivity environments. The definition of stability
depends strongly on the range of target environments
considered (Ceccarelli, 1989).

Overall, mean yield across all environments was
highly positively correlated with the regression coef-
ficient (r = 0.78, p < 0.0001). We estimated this
correlation independently in each cycle and found that
the correlation was originally at r = 0.66 in C0, and it
increased to r = 0.80 in C1 and remained above 0.80 in
cycles 2 and 3 (Table 2). The correlation was signific-
antly greater in C2 than in C0 at P = 0.05 and greater
in C3 than in C0 at P = 0.10 (Table 2). It seems that
selection favored genotypes with greater mean yields
and regression coefficients, and created populations
in which a high correlation between mean yield and
regression coefficient was maintained. This suggests
that there was a higher frequency of genotypes with
relatively low mean yields and high regression coeffi-
cients in the original population that were eliminated
in the first cycle of selection. When we regressed
standardized yields on environmental index, we found
no significant differences among cycles for mean re-
gression coefficients. For all cycles, the regression
coefficient of standardized yield on environmental in-
dex was very close to zero, indicating that mean
standardized yields were very similar in low and high
productivity environments within each cycle.

Superiority analysis

Significant differences among cycles were observed
for superiority parameters in all cases, whether they
were based on ANOVA or AMMI estimates or stand-
ardized or unstandardized yields. Superiority paramet-
ers decreased consistently with each cycle of selection
(Table 3). Decreasing values of Pi indicate increas-
ing adaptability of each cycle (Lin and Binns 1988).
We estimated the correlations between superiority in-
dices and mean yields for each method and found
very large negative correlations for each method that
were consistent across cycles. Over all cycles, the cor-
relations between mean yield and superiority index
were r = –0.96 for ANOVA yield estimates, AMMI
predictions, and standardized AMMI predictions and

r = –0.93 for standardized ANOVA predictions (p <

0.0001 in all cases). This high correlation indicated
that the increase in mean yields across environments
due to selection was accompanied by reasonably con-
sistent yield increases within each environment, i.e.
that improvements in mean yield and general adapt-
ability were made simultaneously. This is congruent
with the results reported by Holland et al. (2000).

Relationships among target environments

AMMI analysis was used to reveal similarities among
environments, according to similar GEI responses.
Approximately 45% of the GEI variance was expected
to be due to “noise” and 55% due to “pattern”. The first
two principal components accounted for 56% of the
G × E variation, and so were included in the AMMI
model. The first principal component primarily sep-
arated the Idaho and Norway environments from the
Iowa environments and accounted for 45% of the GEI
variation (Figure 1). The second principal compon-
ent tended to separate the environments according to
year, with very little weight placed on either Kanawha
environment, and accounted for an additional 11% of
the variation (Figure 1). The first principal component
was significantly correlated with mean environment
yield (r = –0.79, p = 0.006), while the second prin-
cipal component was not significantly related to mean
environment yield (Figure 1).

Holland et al. (2000) demonstrated that the selec-
tion program based on yield evaluations in diverse
environments enhanced mean yields across environ-
ments as well as yields within each environment.
In this analysis, we tested the hypothesis that this
program also resulted in altered genetic correlations
among grain yield pairs of target environments. Three
striking responses were observed when correlations
between yield in pairs of environments were compared
between cycle 0 and cycle 3. First, the correlations
between yield in different years at the same loca-
tion decreased in the later cycle population (Table 4).
Second, seven of eight of the correlations between
Iowa environments and Norway or Idaho environ-
ments were greater in cycle 3 than in cycle 0 (Table 4).
Third, one environmental pair exhibited a signific-
ant negative phenotypic correlation in C0, but no
such negative correlations were observed in cycle 3
(Table 4). The improvement in broad adaptation in
later cycles was accomplished in part by eliminating
negative correlations and strengthening positive cor-
relations between Iowa and the other target locations.
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Table 3. Mean grain yield superiority parameters (Pi ) for each cycle of selection based on
four different within-environment yield estimations

Cycle Superiority parameter (Pi )

ANOVA Standardized AMMI Standardized

estimates ANOVA estimates predictions AMMI predictions

P 940 11.6 255 12.3

0 875 11.2 231 11.1

1 808 10.5 206 9.9

2 750 9.3 173 8.3

3 668 8.5 139 6.7

LSD1 (0.05)a 86 0.9 33 1.6

LSD2 (0.05)b 105 1.0 41 2.0

a LSD1 (0.05) is least significant difference appropriate for comparisons among cycle
means.
b LSD2 (0.05) is least significant difference appropriate for comparisons of cycle means
and parental mean.

 

Figure 1. Testing environments plotted against first two principal components of GEI effects from AMMI analysis (horizontal axes) and mean
yield (vertical axis). Environments are designated as follows: AAS95 = Ås, 1995; AAS96 = Ås, 1996; ABD95 = Aberdeen, 1995; ABD96 =
Aberdeen, 1996; AME95 = Ames, 1995; AME96 = Ames, 1996; KAN95 = Kanawha, 1995; KAN96 = Kanawha, 1996; NAS95 = Nashua,
1995; NAS96 = Nashua, 1996.

Differential genotypic responses to Iowa compared
to Norway or Idaho contributed most to the GEI
variance (Figure 1), therefore, improved genetic cor-
relations between these locations was most important
for increasing the average genetic correlation among
environments reported by Holland et al. (2000). The
offsetting reduction in specific adaptation (decrease in
correlations between years within a location, Table 4)

was of minor concern because mean yield increased
within all locations, averaged over years.

Climate effects on genotype-by-environment
interactions

Aberdeen had the greatest mean maximum daily tem-
peratures within each time period of the growing
season, but also had the lowest mean minimum daily
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Table 4. Genotypic (above diagonal) and phenotypic (below diagonal) correlations among line grain yields in
different evaluation environments by cycle of selection

Ås, 1995 Ås, 1996 Aberdeen, 1995 Aberdeen, 1996 Iowa, 1995 Iowa, 1996

Cycle 0

Ås, 1995 0.68 0.95 0.84 0.15 0.35

Ås, 1996 0.42∗∗∗ 0.54 0.69 –0.42 –0.04

Aberdeen, 1995 0.49∗∗∗ 0.34∗∗∗ 0.78 0.35 0.52

Aberdeen, 1996 0.52∗∗∗ 0.53∗∗∗ 0.49∗∗∗ 0.04 0.25

Iowa, 1995 0.09 –0.32∗∗∗ 0.22∗ 0.03 0.92

Iowa, 1996 0.19 –0.03 0.29∗∗ 0.17 0.61∗∗∗

Cycle 1

Ås, 1995 1.00 1.00 0.87 0.09 0.06

Ås, 1996 0.67∗∗∗ 0.80 0.87 –0.19 –0.17

Aberdeen, 1995 0.64∗∗∗ 0.54∗∗∗ 0.83 0.30 0.35

Aberdeen, 1996 0.51∗∗∗ 0.64∗∗∗ 0.57∗∗∗ –0.05 0.09

Iowa, 1995 0.05 –0.13 0.19 –0.03 0.88

Iowa, 1996 0.03 –0.11 0.21∗ 0.06 0.54∗∗∗

Cycle 2

Ås, 1995 0.79 0.92 0.84 0.17 0.08

Ås, 1996 0.58∗∗∗ 0.91 0.81 0.03 –0.06

Aberdeen, 1995 0.61∗∗∗ 0.63∗∗∗ 0.92 0.45 0.29

Aberdeen, 1996 0.62∗∗∗ 0.62∗∗∗ 0.64∗∗∗ 0.38 0.24

Iowa, 1995 0.10 0.02 0.25∗∗ 0.19 1.00

Iowa, 1996 0.04 –0.03 0.13 0.12 0.43∗∗∗

Cycle 3

Ås, 1995 0.72 0.87 0.74 0.47 0.57

Ås, 1996 0.46∗∗∗ 0.58 0.82 0.02 0.51

Aberdeen, 1995 0.49∗∗∗ 0.41∗∗∗ 0.69 0.56 0.42

Aberdeen, 1996 0.46∗∗∗ 0.63∗∗∗ 0.47∗∗∗ 0.12 0.54

Iowa, 1995 0.22∗ 0.01 0.29∗∗ 0.07 0.28

Iowa, 1996 0.27∗∗ 0.30∗∗ 0.22∗ 0.31∗∗ 0.12

∗, ∗∗, ∗∗∗ Significant at P = 0.05, 0.01, and 0.001 probability levels, respectively.

Table 5. Climate data from each testing environment used for partial least squares regression of genotype-by-environment interaction
effects on climate variables

Environment Variable

MaxT1 MaxT2 MaxT3 MaxT4 MinT1 MinT2 MinT3 MinT4 Day1 Day2 Day3 Day4

C◦
Ås, 1995 14.4 19.1 22.3 22.9 5.8 9.8 11.8 10.8 1063 1116 1046 925

Ås, 1996 16.3 18.1 21.0 23.1 6.7 9.5 9.0 12.7 1099 1110 1030 914

Aberdeen, 1995 21.0 27.0 30.1 30.1 6.8 8.8 8.1 7.5 912 913 873 821

Aberdeen, 1996 23.8 28.1 30.6 30.9 6.0 7.6 9.2 6.5 909 918 887 829

Ames, 1995 16.2 26.2 25.6 29.9 6.5 14.6 15.2 18.5 858 909 908 889

Ames, 1996 17.6 21.1 28.7 27.9 3.4 11.2 18.3 16.5 826 894 913 896

Kanawha, 1995 18.7 27.1 28.9 29.8 6.1 15.2 15.9 16.3 868 916 912 891

Kanawha, 1996 18.6 23.5 29.6 28.0 5.7 12.5 15.8 14.5 861 913 915 885

Nashua, 1995 17.8 26.4 27.3 28.2 6.4 14.5 15.5 16.0 865 915 913 892

Nashua, 1996 13.9 21.2 28.1 26.3 2.5 10.6 16.0 13.8 839 905 919 896
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Table 6. Independent variable loadings (X-loadings) of first three
latent variables from partial least squares regression of geno-
type-by-environment interaction effects on climatic variables

Climate variable x1 x2 x3

MaxT1 0.30 –0.28 0.10

MaxT2 0.06 –0.35 0.32

MaxT3 0.00 –0.37 –0.22

MaxT4 0.01 –0.39 0.14

MinT1 0.24 0.00 0.71

MinT2 –0.41 –0.07 0.45

MinT3 –0.49 –0.06 –0.13

MinT4 –0.48 0.03 0.21

Day1 0.28 0.32 0.17

Day2 0.18 0.37 0.12

Day3 0.05 0.39 0.06

Day4 –0.30 0.32 0.04

Percent of climatic variation explained 31.7% 51.9% 12.6%

Table 7. Mean genotypic Y-loadings of each selection cycle and
parents for first three latent variables of partial least squares
regression of genotype-by-environment interaction effects on cli-
matic variables

Cycle x1 x2 x3

Parents –0.021 0.005 0.013

C0 –0.011 0.000 0.016

C1 0.002 0.011 0.005

C2 –0.003 –0.008 0.001

C3 0.011 –0.008 –0.015

LSD1 (0.05)a 0.013 0.013 0.013

LSD2 (0.05)b 0.023 0.023 0.023

Percent of GEI variation explained 34.7% 12.8% 5.3%

temperatures within the last three time periods each
year (Table 5). Ås had the lowest mean maximum
daily temperatures in all growing periods and the
longest daylengths (Table 5). The Iowa environments
tended to have the greatest mean minimum daily tem-
peratures and the shortest daylengths (except for the
final growing period) (Table 5). It was not possible to
include precipitation as a climate variable because the
evaluation trials in Norway and Idaho were irrigated,
whereas the trials in Iowa were not.

Three latent variables extracted using the partial
least squares regression procedure explained a total
of 96.2% of the variation in standardized climate data
(Table 6) and 52.8% of the GEI variance (Table 7). The
first latent variable (x1) explained 31.7% of the climate

data variation (Table 6) and 34.7% of the genotype-by-
environment interaction variance (Table 7). This factor
primarily represented the maximum and minimum
temperatures and the daylength in the first growing
period (MaxT1, MinT1, and Day1) contrasted with
the minimum temperatures in the other three periods
and the daylength in the final growing period (Day4),
with greatest weight given to negative MinT2, MinT3,
and MinT4 (Table 6). The second factor (x2) accoun-
ted for 51.9% of the climate data variation (Table 6)
and 12.8% of the genotype-by-environment interac-
tion variance (Table 7) and represented primarily the
average daylength in all periods (Day1, Day2, Day3,
and Day4) contrasted with the maximum temperature
in all periods (MaxT1, MaxT2, MaxT3, and MaxT4)
(Table 6). The third factor, x3, accounted for 12.6%
of the variation in climate data (Table 6) and 5.3%
of the genotype-by-environment interaction variance
(Table 7). This factor represented mostly the minimum
temperatures in the first two growing periods (MinT1,
MinT2) and the maximum temperature in the second
growing period (MaxT2) (Table 6).

The Y-loadings of each of these three factors was
computed for each genotype. The Y-loadings indicate
how much weight is given to each factor when optim-
ally estimating a genotype’s genotype-by-environment
interaction effects in the partial least squares regres-
sion procedure. No significant differences among
cycles were observed for the Y-loadings of factor x2
(Table 7), suggesting that selection did not alter the
mean interaction between genotypes and this climate
factor. In contrast, significant differences were ob-
served among cycles for Y-loadings of factors x1 and
x3 (Table 7). The mean x1 loading for C3 was positive
and significantly greater than the negative mean load-
ing for C0 (Table 7). The genotype-by-environment
interaction effects of genotypes in later cycles of se-
lection were more positive with respect to factor x1,
suggesting that the later cycles of selection tended
to respond more positively to greater temperatures
and longer daylengths in the earliest growing period,
lower temperatures in the other three time periods, and
shorter daylengths in the final growing period. This
may mean that the later cycle genotypes have less
tolerance for heat stress but have greater capacity to
respond to early season heat and light and to produce
better under cooler daily minimum temperatures dur-
ing panicle emergence and grain-filling. The mean x3
loading for C3 was negative and significantly smal-
ler than the positive mean loading for C0 (Table 7).
This result suggests that the later cycle populations
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responded more favorably to cooler minimum tem-
peratures in the first two growing periods (in partial
contrast to the weightings in x1) and also to cooler
maximum temperatures in the growing period preced-
ing heading. Taken together, the results of the partial
least squares regression analysis suggest that geno-
types in later cycle populations, in addition to their
greater mean yields within and across environments,
have the capacity to produce greater grain yields un-
der temperatures cooler than the average in the testing
environments reported here. The physiological basis
for this change is not obvious from these data, al-
though the slightly later heading dates of the later
cycles within the Idaho and Norwegian environments
may contribute to the ability of later cycle families
to capitalize on cooler than average environments by
extending the growing and grain-filling developmental
stages. The correlated change in heading date overall,
however, was very slight (Table 1), and cannot ac-
count for a substantial proportion of the more dramatic
changes in yield ability and stability.

Conclusions

Oat families developed from recurrent selection
for adaptation to diverse environments demonstrated
greater mean grain yield within and across environ-
ments and greater yield stability as measured by su-
periority statistics. Clustering environments and ana-
lyzing the correlations between pairs of environments
provided greater insight into the response of the pop-
ulation to selection in terms of adaptation than did
the simpler joint regression and superiority analyses.
Genotypic correlations among the most diverse tar-
get environments increased in later cycles, offsetting
some decreases in correlations between more sim-
ilar environments, and contributing to the increased
mean genetic correlation among all cycles. In addition,
the increased stability and mean productivity resulting
from selection were accompanied by a shift toward
greater productivity in cooler environments.

The only unfavorable response observed in this
population was the decline in test weight, which is
the primary indicator of grain quality. We suggest
that superior lines developed from this population will
serve as useful breeding parents in crosses with locally
adapted materials in both U.S.A. and Scandinavia.
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